Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337035

RESUMEN

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Vacunas , Cricetinae , Animales , Ratones , Linfocitos T CD8-positivos , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Pan troglodytes
3.
Viruses ; 15(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005953

RESUMEN

mRNA vaccines have attracted widespread research attention with clear advantages in terms of molecular flexibility, rapid development, and potential for personalization. However, current mRNA vaccine platforms have not been optimized for induction of CD4/CD8 T cell responses. In addition, the mucosal administration of mRNA based on lipid nanoparticle technology faces challenges in clinical translation. In contrast, adenovirus-based vaccines induce strong T cell responses and have been approved for intranasal delivery. To leverage the inherent strengths of both the mRNA and adenovirus platforms, we developed a novel modular adenoviral mRNA delivery platform based on Tag/Catcher bioconjugation. Specifically, we engineered adenoviral vectors integrating Tag/Catcher proteins at specific locales on the Ad capsid proteins, allowing us to anchor mRNA to the surface of engineered Ad viruses. In proof-of-concept studies, the Ad-mRNA platform successfully mediated mRNA delivery and could be optimized via the highly flexible modular design of both the Ad-mRNA and protein bioconjugation systems.


Asunto(s)
Adenoviridae , Vectores Genéticos , Vacunas de ARNm , Adenoviridae/genética , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vectores Genéticos/genética , Ingeniería Genética
4.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986823

RESUMEN

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

5.
Mol Ther ; 31(9): 2600-2611, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37452494

RESUMEN

B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.


Asunto(s)
Adenoviridae , Enfermedades Transmisibles , Ratones , Humanos , Animales , Adenoviridae/genética , Vectores Genéticos/genética , Terapia Genética/métodos , Proteínas Virales/genética , Linfocitos B
6.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205450

RESUMEN

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

8.
ACS Nano ; 16(7): 10443-10455, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35749339

RESUMEN

The capacity to efficiently deliver the gene-editing enzyme complex to target cells is favored over other forms of gene delivery as it offers one-time hit-and-run gene editing, thus improving precision and safety and reducing potential immunogenicity against edited cells in clinical applications. Here we performed a proof-of-mechanism study and demonstrated that a simian adenoviral vector for DNA delivery can be repurposed as a robust intracellular delivery platform for a functional Cas9/guide RNA (gRNA) complex to recipient cells. In this system, the clinically relevant adenovirus was genetically engineered with a plug-and-display technology based on SpyTag003/SpyCatcher003 coupling chemistry. Under physiological conditions, an off-the-shelf mixture of viral vector with SpyTag003 incorporated into surface capsid proteins and Cas9 fused with SpyCatcher003 led to a rapid titration reaction yielding adenovirus carrying Cas9SpyCatcher003 on the virus surface. The Cas9 fusion protein-conjugated viruses in the presence of a reporter gRNA delivered gene-editing functions to cells with an efficiency comparable to that of a commercial CRISPR/Cas9 transfection reagent. Our data fully validate the adenoviral "piggyback" approach to deliver an intracellularly acting enzyme cargo and, thus, warrant the prospect of engineering tissue-targeted adenovirus carrying Cas9/gRNA for in vivo gene editing.


Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Sistemas CRISPR-Cas/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Cápside/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo
9.
J Control Release ; 334: 106-113, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33872627

RESUMEN

For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.


Asunto(s)
Adenoviridae , Anticuerpos de Dominio Único , Adenoviridae/genética , Técnicas de Transferencia de Gen , Ingeniería Genética , Terapia Genética , Vectores Genéticos , Anticuerpos de Dominio Único/genética
10.
Heliyon ; 7(2): e06210, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33615011

RESUMEN

Osteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells. We proposed that OC-CAVE1 (CAV2 with the E1A promoter replaced with the osteocalcin promotor) may also enhance existing immunity against tumors by overcoming immune tolerance via exposure of new epitopes and cytokine signaling. Eleven client-owned dogs with spontaneously occurring osteosarcomas were enrolled in a pilot study. All dogs were injected with OC-CAVE1 following amputation of the affected limb or limb-sparing surgery. Dogs were monitored for viremia and viral shedding. There was minimal virus shedding in urine and feces by the 6th day and no virus was present in blood after 4 weeks. CAV-2 antibody-titers increased in all of the patients, post-CRAd injection. Immunological assays were performed to monitor 1) humoral response against tumors, 2) levels of circulatory CD11c + cells, 3) levels of regulatory T cells, and 4) cytotoxic activity of tumor specific T cells against autologous tumor cells between pre-CRAd administration and 4 weeks post-CRAd administration samples. Administration of the CRAd OC-CAVE1 resulted in alteration of some immune response parameters but did not appear to result in increased survival duration. However, 2 dogs in the study achieved survival times in excess of 1 year. Weak replication of OC-CAVE1 in metastatic cells and delay of chemotherapy following CRAd treatment may contribute to the lack of immune response and improvement in survival time of the clinical patients.

11.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32102889

RESUMEN

Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.


Asunto(s)
Adenoviridae/genética , Cápside/metabolismo , Vectores Genéticos , Gorilla gorilla/virología , Pulmón/metabolismo , Tropismo/inmunología , Infecciones por Adenoviridae/patología , Infecciones por Adenoviridae/virología , Adenovirus Humanos/genética , Animales , Proteínas de la Cápside/genética , Células Endoteliales , Expresión Génica , Terapia Genética , Hígado , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Estudios Seroepidemiológicos , Transducción Genética , Transgenes , Virión
12.
Mol Cancer Ther ; 19(3): 966-971, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31907220

RESUMEN

The application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity in vivo required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose. Our novel strategy exploits three distinct targeting modalities that operate in functional synergy. Transcriptional targeting is achieved via the hROBO4 promoter, which restricts transgene expression to proliferative vascular endothelium. Viral binding is modified by incorporation of an RGD4C peptide in the HI loop of the fiber knob for recognition of cellular integrins. Liver sequestration is mitigated by ablation of factor X binding to the major capsid protein hexon by a serotype swap approach. The combination of these technologies into the context of a single-vector agent represents a highly original approach. Studies in a murine model of disseminated cancer validated the in vivo target cell selectivity of our vector agent. Of note, clear gains in therapeutic index accrued these vector modifications. Whereas there is universal recognition of the value of vector targeting, very few reports have validated its direct utility in the context of cancer gene therapy. In this regard, our article validates the direct gains that may accrue these methods in the stringent delivery context of disseminated neoplastic disease. Efforts to improve vector targeting thus represent a critical direction to fully realize the promise of cancer gene therapy.


Asunto(s)
Adenoviridae/genética , Biomarcadores de Tumor/genética , Proteínas de la Cápside/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Neoplasias Renales/terapia , Neovascularización Patológica/terapia , Animales , Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/genética , Neoplasias Renales/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cell Rep ; 28(10): 2634-2646.e4, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484074

RESUMEN

The teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice. Protection is antibody dependent, CD8+ T cell independent, and for GAd-Eecto requires the complement component C1q. Immunization of GAd-Zvp induces antibodies against a key neutralizing epitope on domain III of E protein and confers durable protection as evidenced by memory B and long-lived plasma cell responses and challenge studies 9 months later. In two models of ZIKV infection during pregnancy, GAd-Zvp prevents maternal-to-fetal transmission. The gorilla adenovirus-based vaccine platform encoding full-length prM and E genes is a promising candidate for preventing congenital ZIKV syndrome and possibly infection by other flaviviruses.


Asunto(s)
Adenoviridae/inmunología , Gorilla gorilla/virología , Inmunidad , Virus Zika/inmunología , Animales , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Femenino , Feto/patología , Feto/virología , Humanos , Memoria Inmunológica , Ratones Endogámicos C57BL , Embarazo , Linfocitos T/inmunología , Vacunas Virales/inmunología
14.
J Ovarian Res ; 12(1): 18, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767772

RESUMEN

BACKGROUND: Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication. RESULTS: We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy. CONCLUSIONS: Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.


Asunto(s)
Adenoviridae/genética , Modelos Animales de Enfermedad , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Ováricas/terapia , Adenoviridae/fisiología , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Vectores Genéticos , Humanos , Ratones , Virus Oncolíticos/fisiología , Neoplasias Ováricas/virología , Proteínas Supresoras de Tumor/genética , Replicación Viral , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancer Gene Ther ; 25(1-2): 27-38, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242639

RESUMEN

Adenoviral (Ad) vector vaccines represent one of the most promising modern vaccine platforms, and Ad vector vaccines are currently being investigated in human clinical trials for infectious disease and cancer. Our studies have shown that specific targeting of adenovirus to dendritic cells dramatically enhanced vaccine efficacy. However, this was achieved using a molecular adapter, thereby necessitating a two component vector approach. To address the mandates of clinical translation of our strategy, we here sought to accomplish the goal of DC targeting with a single-component adenovirus vector approach. To redirect the specificity of Ad vector vaccines, we replaced the Ad fiber knob with fiber-fibritin chimeras fused to DC1.8, a single-domain antibody (sdAb) specific for murine immature DC. We engineered a fiber-fibritin-sdAb chimeric molecule using the coding sequence for DC1.8, and then replaced the native Ad5 fiber knob sequence by homologous recombination. The resulting Ad5 virus, Ad5FF1.8, expresses the chimeric fiber-fibritin sdAb chimera. Infection with Ad5FF1.8 dramatically enhances transgene expression in DC2.4 dendritic cells compared with infection with native Ad5. Ad5FF1.8 infection of bone marrow-derived DC demonstrates that Ad5FF1.8 selectively infects immature DC consistent with the known specificity of DC1.8. Thus, sdAb can be used to selectively redirect the tropism of Ad5 vector vaccines, providing the opportunity to engineer Ad vector vaccines that are specifically targeted to DC, or specific DC subsets.


Asunto(s)
Adenoviridae , Células Dendríticas/inmunología , Vectores Genéticos , Vacunas , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Ratones , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Vacunas/genética , Vacunas/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
16.
PLoS One ; 12(12): e0190125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29267342

RESUMEN

Clinical application of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based cancer therapeutics has not reached optimal potencies in part due to inadequate drug stability and inefficiencies in cancer-selective drug delivery. As such, innovative strategies regarding drug design and delivery are of utmost importance to achieve improved treatment results. With our current study, we aimed at exploring the groundwork for a two-stage targeting concept, which is based on the intrinsic tumor homing capacity of mesenchymal stem cells (MSCs) as cellular drug factories for the in situ production of our newly designed and biomarker-targeted TRAIL-based TR3 therapeutics. Since MSCs are primary cells, capable in vitro of only a limited number of cell divisions, identification of suitable strategies for their efficient genetic manipulation is of critical importance. We chose adenoviral (Ad) vectors as a transduction vehicle due to its ability to infect dividing and non-dividing cells and because of their limited restrictions regarding the packaging capacity of their genetic payload. In order to enhance the transduction efficacy of MSCs using Ad5 wild-type-based vectors, we tested a variety of fiber knob modifications on a panel of patient-derived MSC lines established from adipose tissue. We identified Ad5pK7, an Ad5 vector containing a polylysine fiber knob modification, exhibiting the highest transduction rates across a panel of 16 patient-derived MSC lines. We further demonstrated that MSCs could be efficiently transduced with an Ad5pK7 vector containing membrane-anchored and secreted TR3 expression units, including the MUC16 (CA125)-targeted variant Meso64-TR3. In both in vitro and in vivo experiments, MSC-derived Meso64-TR3 was far more potent on MUC16-expressing ovarian cancer compared to its non-targeted TR3 counterpart. Our findings thus provide the foundation to initiate further preclinical investigations on MSC-mediated treatment options in ovarian cancer using biomarker-targeted TR3-based biologics.


Asunto(s)
Adenoviridae/genética , Productos Biológicos/uso terapéutico , Células Madre Mesenquimatosas/citología , Neoplasias Ováricas/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Transducción Genética , Femenino , Humanos , Neoplasias Ováricas/patología
17.
Clin Vaccine Immunol ; 23(9): 774-84, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27413067

RESUMEN

Clostridium difficile infection (CDI), a leading cause of nosocomial infection, is a serious disease in North America, Europe, and Asia. CDI varies greatly from asymptomatic carriage to life-threatening diarrhea, toxic megacolon, and toxemia. The incidence of community-acquired infection has increased due to the emergence of hypervirulent antibiotic-resistant strains. These new strains contribute to the frequent occurrence of disease relapse, complicating treatment, increasing hospital stays, and increasing morbidity and mortality among patients. Therefore, it is critical to develop new therapeutic approaches that bypass the development of antimicrobial resistance and avoid disruption of gut microflora. Here, we describe the construction of a single heteromultimeric VHH-based neutralizing agent (VNA) that targets the two primary virulence factors of Clostridium difficile, toxins A (TcdA) and B (TcdB). Designated VNA2-Tcd, this agent has subnanomolar toxin neutralization potencies for both C. difficile toxins in cell assays. When given systemically by parenteral administration, VNA2-Tcd protected against CDI in gnotobiotic piglets and mice and to a lesser extent in hamsters. Protection from CDI was also observed in gnotobiotic piglets treated by gene therapy with an adenovirus that promoted the expression of VNA2-Tcd.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Antitoxinas/uso terapéutico , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Adenoviridae/genética , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Portadores de Fármacos , Evaluación Preclínica de Medicamentos , Enterotoxinas/antagonistas & inhibidores , Terapia Genética/métodos , Mesocricetus , Ratones Endogámicos C57BL , Porcinos , Resultado del Tratamiento
18.
J Ovarian Res ; 9(1): 38, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27349517

RESUMEN

BACKGROUND: A major hurdle incurrent to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy agents is their limited therapeutic efficacy. In this study we evaluated whether arming our previously reported Ad5/3Δ24 CRAd vector containing a 24-base pair deletion in the E1A conserved region 2, which allows selective replication within Rb-p16-deficient tumor cells, to express therapeutic genes could improve oncolytic virus potency in ovarian cancer cells. We choose to assess the therapeutic benefits achieved by virus-mediated expression of interleukin 24 (IL-24), a cytokine-like protein of the IL-10 family, and the inhibitor of growth 4 (ING4) tumor suppressor protein. RESULTS: The generated CRAd-IL24 and CRAd-ING4 vectors were tested in ovarian cancer cell lines in vitro to compare their replication, yield, and cytotoxic effects with control CRAd Ad5/3∆24 lacking the therapeutic gene. These studies showed that CRAd-IL24 infection resulted in significantly increased yield of infectious particles, which translated to a marked enhancement of virus-induced cytotoxic effects as compared to CRAd-ING4 and non-armed CRAd. Testing CRAd-IL24 and CRAd-ING4 vectors combined together did not revealed synergistic effects exceeding oncolytic potency of single CRAD-IL24 vector. Both CRAds were also tested along with anti-VEGF monoclonal antibody Avastin and showed no significant augmentation of viral cytolysis by anti-angiogenesis treatment in vitro. CONCLUSIONS: Our studies validated that arming with these key immunomodulatory genes was not deleterious to virus-mediated oncolysis. These findings thus, warrant further preclinical studies of CRAd-IL24 tumoricidal efficacy in murine ovarian cancer models to establish its potential utility for the virotherapy of primary and advanced neoplastic diseases.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Homeodominio/genética , Interleucinas/genética , Neovascularización Patológica/genética , Viroterapia Oncolítica , Neoplasias Ováricas/genética , Proteínas Supresoras de Tumor/genética , Adenoviridae/genética , Inhibidores de la Angiogénesis/farmacología , Bevacizumab/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Femenino , Orden Génico , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Neovascularización Patológica/terapia , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia , Replicación Viral
19.
PLoS One ; 11(4): e0154819, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27128437

RESUMEN

A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.


Asunto(s)
Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium yoelii/inmunología , Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Proteínas de la Cápside/genética , Citocinas/biosíntesis , Epítopos de Linfocito T/genética , Femenino , Vectores Genéticos , Humanos , Inmunidad Celular , Malaria/inmunología , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Ratones , Plasmodium yoelii/genética , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
20.
Clin Vaccine Immunol ; 23(3): 213-8, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740390

RESUMEN

Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 µg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 µg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 µg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.


Asunto(s)
Adenoviridae/genética , Carbunco/prevención & control , Antígenos Bacterianos/inmunología , Toxinas Bacterianas/inmunología , Inmunización Pasiva/métodos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Animales , Carbunco/inmunología , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/inmunología , Bacillus anthracis/inmunología , Bacillus anthracis/patogenicidad , Femenino , Sueros Inmunes/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Esporas Bacterianas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...